

Code No. : 135070
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. (Mech. Engg.) II Year I-Semester Backlog Examinations, December-2017

Thermodynamics
Time: 3 hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part-A }(10 \times 2=20 \text { Marks })
$$

1. Define the terms system, property, path and cyclic process.
2. Explain thermodynamic equilibrium.
3. Identify the energy property which changes when heat is supplied to a closed system at (i) constant pressure, and (ii) constant volume.
4. Explain perpetual motion machine of kind one (PMM-I).
5. State Carnot theorem.
6. "Change in entropy is a measure of irreversibility"-Elaborate.
7. What is meant by pure substance? Define crilical point of water.
8. Define the dryness fraction (x) and represent $x=0$ and $x=1$ lines on a $T-S$ diagram.
9. Illustrate Otto cycle on $p-v$ and T-S planes.
10. Define the terms partial pressure and partial volume as applied to gas mixtures.

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

11. a) Explain clearly about microscopic and macroscopic approaches of thermodynamic system.
b) The temperature t on a thermometric scale is defined in terms of a property k by the relation $t=a \ln (k)+b$ where a and b are constants. The values are found to be 1.83 and 6.78 at the ice point and steam point, the temperatures of which are assigned the numbers 0 and 100 respectively. Determine the temperature corresponding to a reading of k equal to 2.42 on the thermometer.
12. a) List the three corollaries of the First law of thermodynamics.
b) A perfect gas occupies a volume of $0.3 \mathrm{~m}^{3}$ at 1 bar and $27^{\circ} \mathrm{C}$. The gas undergoes a compression to $0.06 \mathrm{~m}^{3}$. Evaluate the heat absorbed or rejected by the gas for each of the following methods of compression, i) constant pressure ii) isothermal, iii) adiabatic, and iv) according to the law $p V^{1 . I}=$ constant. For gas $R=0.287 \mathrm{~kJ} / \mathrm{kg}-K$ and $\gamma=1.4$.
13. a) Explain Carnot cycle with the help of $p-v$ and $T-S$ diagrams.
b) A copper block of heat capacity $\left(C_{p}\right) 150 \mathrm{~J} / \mathrm{K}$ at $100^{\circ} \mathrm{C}$ is placed in a lake at $8^{\circ} \mathrm{C}$. Estimate the entropy change for the (i) copper block, (ii) lake, and (iii) the universe.
14. a) Starting from the first principles, develop Maxwell's relations.
b) Explain the Mollier diagram for steam, with the help of a suitable sketch. List its importance in thermodynamic calculations?
15. a) State and prove Amagat-Leduc law as applied to gas mixtures.
b) At the beginning of compression in a diesel cycle the temperature is 300 K , pressure is 200 kPa and after combustion (heat addition) is complete the temperature is 1500 K and the pressure is 7.0 MPa . Determine the (i) compression ratio, (ii) thermal efficiency, and (iii) mean effective pressure.
16. a) 0.3 kg of a perfect gas occupies a volume of $0.2 \mathrm{~m}^{3}$ at a pressure of 1 bar and a temperature of $27^{\circ} \mathrm{C}$. The gas is compressed until the pressure is 3 bar and final volume is $0.1 \mathrm{~m}^{3}$. Calculate the (i) molecular weight of the gas and (ii) final temperature.
b) Using the steady flow energy equation, develop the governing equations for i) compressor, ii) diffuser and iii) condenser.
17. Answer any two of the following:
a) In a certain heat exchanger, 50 kg of water is heated per minute from $50^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$ by hot gases which enter the heat exchanger at $250^{\circ} \mathrm{C}$. If the flow rate of gases is $100 \mathrm{~kg} / \mathrm{min}$, estimate the net change of entropy.
b) A piston-cylinder arrangement contains steam at 1 bar and temperature $150^{\circ} \mathrm{C}$. The steam is compressed reversibly and isothermally to a state where the specific volume is $0.28 \mathrm{~m}^{3} / \mathrm{kg}$. Determine the change of internal energy and entropy for the system.
c) Develop an expression for the air-standard efficiency of the Diesel cycle in terms of compression ratio, cut off ratio and the adiabatic index.

$\cos 0865808080$

